Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining
نویسندگان
چکیده
منابع مشابه
[Repair of ionizing radiation induced DNA double strand breaks].
DNA double-strand breaks (DSB) are created by ionizing radiation, an important environmental genotoxic agent. DSB are repaired by two mechanisms associated with recombination. In eukaryotic cells homologous recombination depends on genes belonging to the RAD52 epistatic group. Alternative pathway, DNA end-joining in non-homologous recombination involves DNA-dependent protein kinase (DNA-PK).
متن کاملRepairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.
The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its euka...
متن کاملRepair of double-strand breaks by end joining.
Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed muc...
متن کاملRadiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks.
Two major pathways for repairing DNA double-strand breaks (DSBs) have been identified in mammalian cells, nonhomologous end-joining (NHEJ) and homologous recombination (HR). Inactivation of NHEJ is known to lead to an elevated level of spontaneous and radiation-induced chromosomal rearrangements associated with an increased risk of tumorigenesis. This has raised the idea of a caretaker role for...
متن کاملSirtuin inhibition increases the rate of non-homologous end-joining of DNA double strand breaks.
Sirtuins (type III histone deacetylases) are an important member of a group of enzymes that modify chromatin conformation. We investigated the role of sirtuin inhibitor, GPI 19015, in double strand break (DSB) repair in CHO-K1 wt and xrs-6 mutant cells. The latter is defective in DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end-joining (D-NHEJ). DSB were estimated by the neutra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical Journal
سال: 2009
ISSN: 0264-6021,1470-8728
DOI: 10.1042/bj20080413